

Target Support Facility for a Solid Target Neutrino Production Facility

Phil Spampinato

Joel Chesser

Tony Gabriel

Franz Gallmeier

John Haines

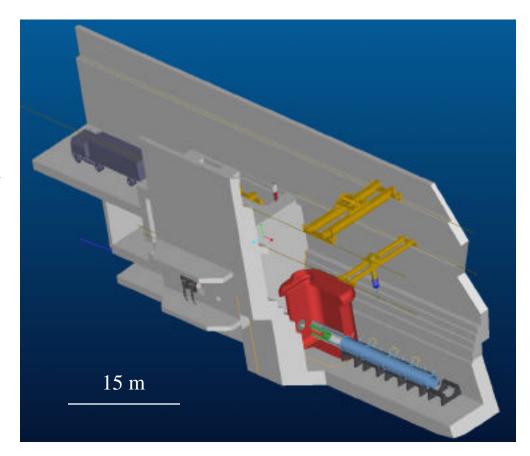
Dick Lillie

Tom McManamy

This work is part of the

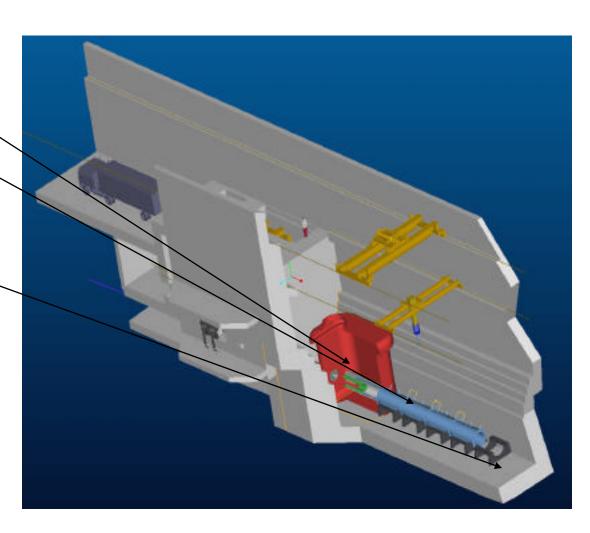
"FNAL Feasibility Study of a

Neutrino Source Based on a


Muon Storage Ring"

Outline

- Overall facility
- Design requirements& assumptions
- Target analysis/design
- Proposed R&D
- Decay channel
- Shielding
- Radiation handling
- Cost



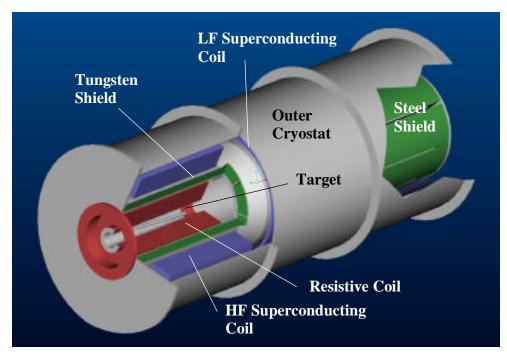
2

Features of the Target Support Facility for the Fermilab Study

- Graphite target, He vessel
- Hybrid solenoid system (National High Magnetic Field Laboratory)
- Decay channel
- Nuclear shielding
- Radiation handling

Design Requirements/Assumptions

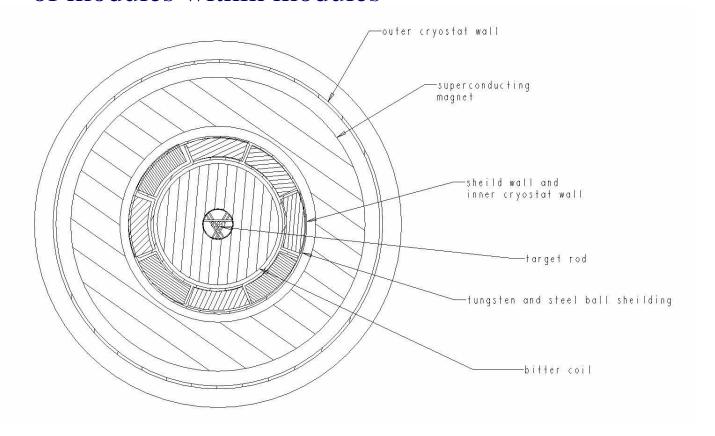
- 16 GeV, 4 MW beam on target
- Operating availability 2 x 10⁷ sec/yr (therefore, life-limited components are modular)


Component	Expected Lifetime	Replacement Time
Target	3 mos	6 days
Target + Bitter Coil	6 mos	7 days
Target +Bitter Coil + PBW	1 yr	8 days
PB Instrumentation	1 yr	5-7 days
Beam Dump	5 yrs	1.5 mos
High Field S/C Coils	>20 yrs	9-12 mos
Low Field S/C Coils	>20 yrs	9-12 mos

 Dose for personnel access in crane hall <0.25 mr/h

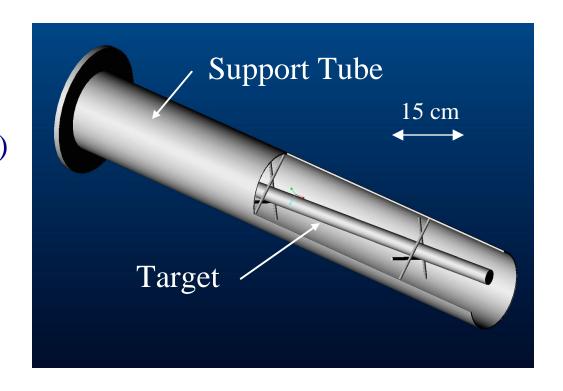
The Target Region is in a He Containment Vessel that Minimizes Air Activation and Target Evaporation

- Target: 1.5 cm diam x 80 cm length (per Mokhov)
- High field solenoid: 8T Bitter,
 12T Ni₃Sn
- Low field: 1.25T NbTi
 - coils are arranged in 4 m
 common cryostats to selfreact magnetic forces
- Magnet shield: W & steel
- Bulk shield: 4.5 m steel & 2 m steel in decay channel



MODULAR ARRANGEMENT OF COMPONENTS IN THE TARGET REGION

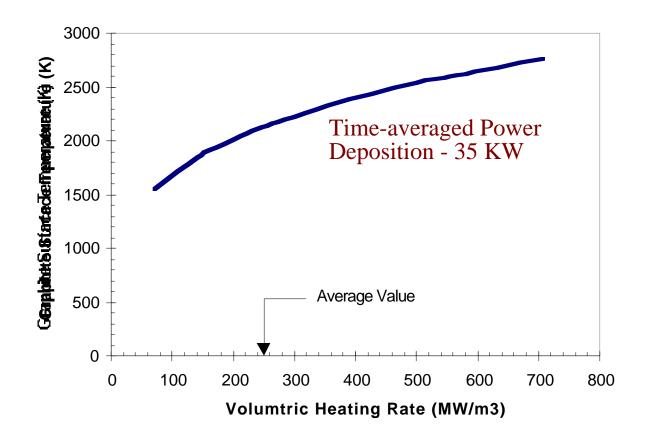
Target Region (cont.)


• A section through the target shows the arrangement of modules within modules

The Graphite Target is a Passively Cooled Rod-like Structure within a Support Tube

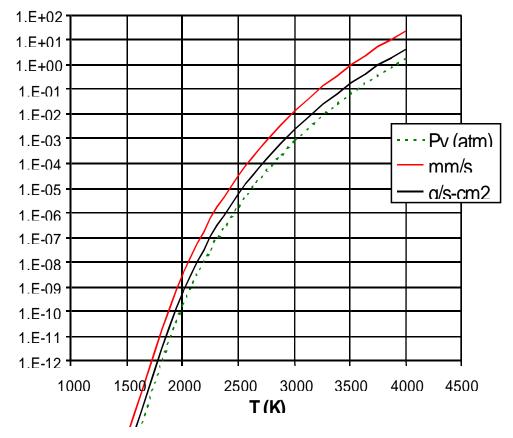
- It is coaxial with the proton beam, but 50 milli-radians to the magnetic axis of the decay channel (*Mokhov*)
- Supported on graphite spokes
- Radiates to a watercooled stainless steel support tube (15 cm diam)

7

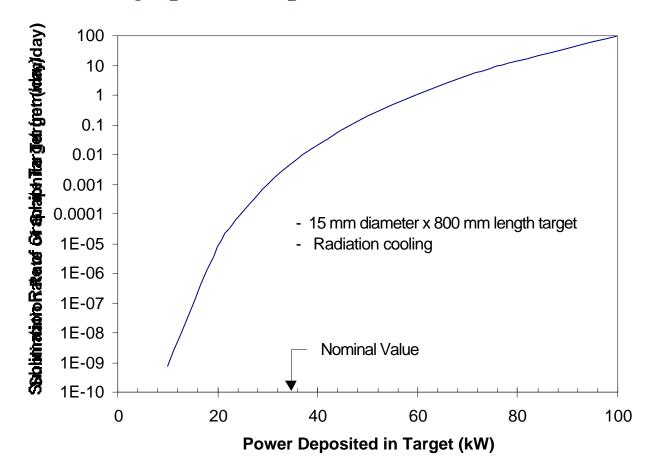

Target (cont.) - Stress

- Preliminary thermal and structural analyses were performed to address feasibility of the concept and identify key issues
- Per Mokhov's results, time-averaged power deposition (1.5 MW beam) = 35 KW
 - volumetric power deposition is 250 MW/m³ (assumed uniform along axis)
 - target surface temperature 1850°C
 - temperature at center 1925^oC
 - thermal stress 5 MPa < 30 MPa

Target - Stress (cont.)


• If peak power distribution is 2X average, surface temperature = 2260°C, stress = 10 MPa

Target (cont.) - Sublimation


- Sublimation in a perfect vacuum is temperature sensitive; (provides a conservative estimate compared to He data)
- At 250 MW/m³ (1850⁰ C surf.), recession rate = $5 \mu m/d$

Target - Sublimation (cont.)

• at 2X the average power deposition, recession rate = 5 mm/d

Target (cont.) - Issues

- These results support the feasibility of using a radiatively cooled graphite target, but also demonstrate the need for additional work to:
 - predict axial power deposition
 - determine temperature distribution with realistic modeling and radiation heat transfer
 - perform tests to determine sublimation rate in a He environment over a practical range of pressures

Target Issues (cont.)

- Other Issues For Evaluation
 - Examine irradiation database for graphite since radiation damage may be the life limiting mechanism
 - Evaluate use C-C composites which incorporate carbon fibers within a graphite matrix
 - for improved thermal-mechanical properties and increased resistance to irradiation damage
 - to develop a detailed design for supporting the target within a water-cooled support tube that allows free expansion of the target as it heats up

Proposed R&D

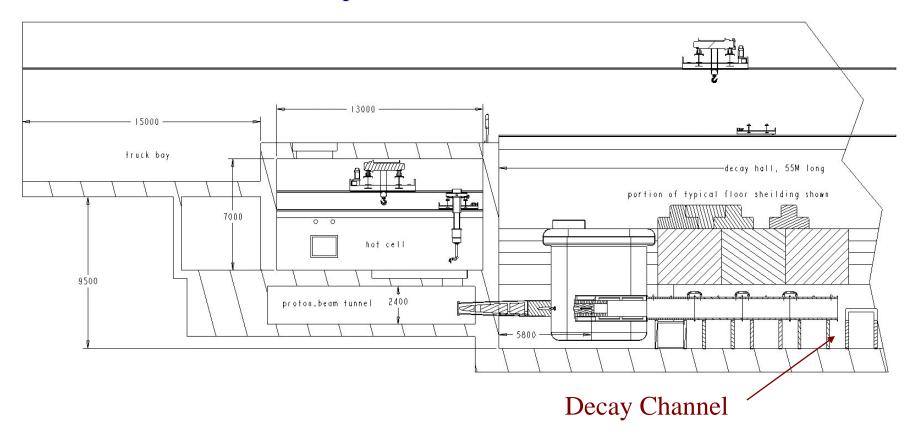
• Near term R&D to address material issues is \$64K

Near Term R&D Tasks for the Graphite Target (1.5MW Design)

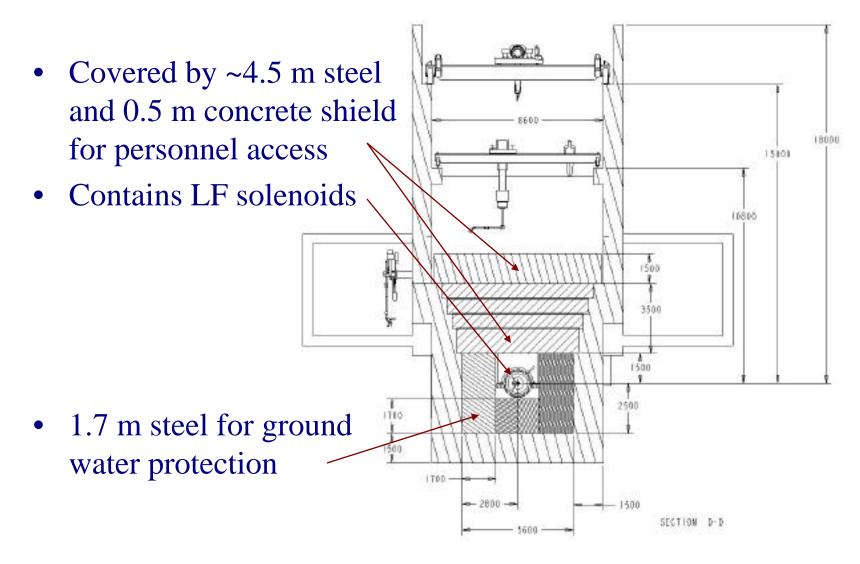
- 1. Assess commercially available graphite-composite properties for candidate target materials. (\$2K)
- 2. Develop a neutronics model for heating distribution (energy distribution) in the target. (\$5K)
- 3. Develop a neutronics model for heating distribution and multiple scattering effects in the proton beam window. (\$2K)
- 4. Develop a finite element model for temperature and stress distributions, and deflections. (\$6K)
- 5. Develop a test plan, design and assemble equipment for sublimation tests under high temperature conditions in a helium environment: assuming that test equipment is available, do benchmark tests in vacuum; exploratory tests would proceed to measure sublimation rate and determine the effect of He pressure and purity. (\$21K)
- 6. Do thermal shock tests using ATJ graphite; assess material survivability. (\$5K)
- 7. Develop the design details for the radiatively cooled target, including target rod supports, the water-cooled support tube, utility connectors, and remote handling approach. (\$23K)

Proposed R&D (cont.)

• Longer term R&D to address material survivability issues and design issues is \$387K


List of Additional (Longer Term) R&D Tasks

- 1. Complete the sublimation tests under target operating conditions. (\$32K)
- 2. If a suitable carbon-carbon composite material is found that has insufficient irradiation data, test for neutron/gamma irradiation survivability at ORNL's High Flux Isotope Reactor. (\$120K)
- 3. Construct and test a full scale prototype target; assess the geometric integrity of the support structure and the target rod (fabrication and alignment issues); assess support schemes for graphite wire, silicon carbide, ..., assess remote handling features. (\$85K)
- 4. Develop a preliminary design of the target beam stop located at 5.5<Z<6.5 m). (\$26K)
- 5. Develop a full scale mock up of the target region (-120<Z<140 cm) using low cost materials; demonstrate access and remote handling for replacing the target and Bitter coil; assess downtime. (Note: Robotic facilities and remote handling equipment in use by SNS are available at ORNL at no added cost.). (\$92K)
- 6. Develop a proton beam window mock up; demonstrate remote removal of cooling and diagnostic connectors; demonstrate window replacement; assess downtime. (*Note: Robotic facilities and remote handling equipment in use by SNS are available at ORNL at no added cost.*) (\$32K)


Decay Channel

- 50 m long, located under crane hall; contains twelve 4 m LF cryostats
- LF coils have 30 cm SS/water shield; beam dump at 5.5<Z<6.5 m
- 60 cm diam Ti window separates He from vacuum

Decay Channel (cont.)

Shielding

- Neutron/gamma/proton flux profiles in the target area and decay channel (0<Z<16m) were generated to estimate dose rate and evaluate shield dimensions
- Criteria: 0.25 mr/h in the crane hall with beam on; beam power = 4 MW
- MCNPX cylindrical model

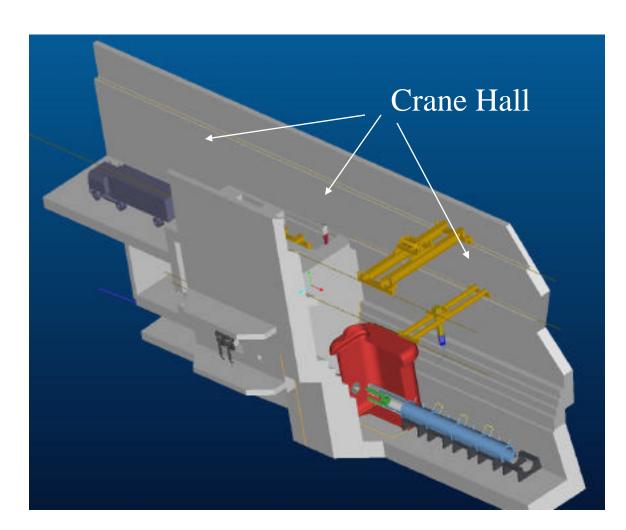
Dose Levels In Target Area	Dose>1GeV	Dose<1GeV	Total Dose
	7 4515E+11	9 7505E+11	1 7202E+12
	(mrem/h)	(mrem/h)	(mrem/h)
Tunnel Segment			
0.2 to 0.70	1.0005E+11	1 7095E+11	2 7099E±11
0.7 to 1.70	9 6226E+10	1 3606E+11	2 3228E+11
1.7 to 2.70	8 3777E+10	1 9958E+11	2.8335E+11
2.7 to 3.70	6 2515E+10	2.4726E+11	3 0977E+11
3.7 to 4.70	4 4562E+10	2 2039E+11	2.6495E+11
4.7 to 5.70	3 3549E+10	3 1250E+11	3 4605E+11
5.7 to 6.70	2.8647E+10	3 6626E+11	3 9491E+11
6.7 to 7.70	2 3574E+10	1 3264F+11	1 5621E±11
7.7 to 8.70	1 9190F+10	7 6736F+10	9 5926F+10
8.7 to 9.70	1 5758E+10	5 3156E+10	6 8914E+10
9.7 to 10.70	1 3255E+10	3 8942F+10	5 2196E+10
10.7 to 11.70	1 1229F+10	2 9572E+10	4 0801E+10
11.7 to 12.70	9 7006E+09	2.2883E+10	3 2584E+10
12.7 to 13.70	8 4020E+09	1 8354E+10	2.6756E+10
13.7 to 16.00	1 1923F+10	2 2099E+10	3 4022E+10

Shielding (cont.)

		Distance D	ownstream	From		
	Target (m)					
	3 to 5	5 to 7	7 to 9	9 to 11	11 to 13	13 to 15
Criteria						
		Steel Thick	kness (ft) / (Concrete T	hickness	
		(ft)				
Minimum	14.8/1.0	14.8/1.4	14.2/0.9	13.9/1.0	13.1/1.6	14.1/1.0
Total						
Thickness						
Minimum	14.2/2.0	14.8/1.4	12.8/3.4	11.8/4.4	11.5/4.7	12.1/4.1
Steel						
Thickness						

Shield (cont.)

• A high neutron/gamma flux will be present along the length of the decay channel (and beyond!)


	Total Neutron Flux		Total Gamma Flux	
Segment	all protons	terminated p.	all protons	terminated p.
(cm to cm)	(n/cm**2/s)	(n/cm**2/s)	(g/cm**2/s)	(g/cm**2/s)
target	9.6911e+12	9.6495e+12	2.9729e+13	2.9731e+13
20 to 70	1.8919e+12	1.8818e+12	4.7647e+12	4.7907e+12
70 to 170	1.5281e+12	1.5206e+12	3.1056e+12	3.1449e+12
170 to 270	2.0809e+12	2.0988e+12	3.3005e+12	3.3192e+12
270 to 370	2.5212e+12	2.4968e+12	3.7693e+12	3.7820e+12
370 to 470	2.2949e+12	2.0483e+12	3.4240e+12	3.3310e+12
470 to 570	3.1645e+12	1.1266e+12	3.7925e+12	2.4159e+12
570 to 670	3.6004e+12	5.4587e+11	4.5052e+12	1.5945e+12
670 to 770	1.4011e+12	4.7507e+11	2.3729e+12	1.2952e+12
770 to 870	7.9235e+11	4.7067e+11	1.5967e+12	1.1328e+12
870 to 970	5.3975e+11	3.8577e+11	1.1962e+12	9.2990e+11
970 to 1070	3.9134e+11	2.9575e+11	9.3197e+11	7.5742e+11
1070 to 1170	2.9506e+11	2.3312e+11	7.4797e+11	6.3161e+11
1170 to 1270	2.2796e+11	1.8900e+11	6.1290e+11	5.3764e+11
1270 to 1370	1.8210e+11	1.5578e+11	5.1870e+11	4.4537e+11
1370 to 1600	1.2125e+11	1.0064e+11	3.8147e+11	3.3290e+11

Crane Hall and Remote Handling

Crane Hall

- 12 m above floor level
- 80 m length
- 40 ton crane
- bridge mounted manipulator
- removable shield slabs (not shown)

Crane Hall and Remote Handling (cont.)

- 20 ton crane
- bridge manipular
- wall manipulator
- CCTV, ...

15000	13000	¥
	7000	decay hall, 55M long portion of typical floor sheilding shown
9500	proton_beam tunnel 2400	
<u> </u>	5800	

Component	Weight	Size (m)
	(lbs)	
HF Cryostat	72,500	1.5 dia x
		4.2
HF S/C Coil	18,000	1.5 dia x
		1.2
Tungsten Shield	44,000	1.0 dia x
Module		4.0
LF Cryostat/Steel	44,000	1.3 dia x
Shield		4.0
Steel Shield Slabs	72,000	0.4 x 1.0 x
		3.0
Vert. Steel Shield	28,000	0.6 x 1.2 x
Blocks		2.0

Table of Component Sizes and Weights

Cost Estimate

- No contingency!
- No overhead burdens!

Construction Costs	\$K
CraneBay/Target	23,596
Region/Decay Channel	
Hot Cell	1,418
Truck Bay	470
Engineering/QA/Procuremen	<u>5,200</u>
t	
Subtotal	31,194
Equipment Costs	
Target Area (incl HF coils:	9,880
\$8,729K)	
Crane Hall	663
Decay Channel (incl LF	14,390
coils: \$8,831K)	
Hot Cell	1,259
Engineering/QA/Procuremen	<u>4,800</u>
t	
Subtotal	31,527
Target Support Facility Total	62,721
Cost	

Conclusions

- A conceptual design for the neutrino factory *target support facility* was completed
- Preliminary calculations demonstrate feasibility using a passively-cooled graphite target
- Near term and longer term R&D are proposed to address material survivability and design issues for the graphite target
- A concept design for high field and low field solenoids demonstrates feasibility of resistive/superconducting magnets that meet field-on-axis requirements (NHMFL)
- The facility arrangement is based on work done for the SNS